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1. INTRODUCTION

A classical problem in complex analysis consists in finding the distance
of a functionJE L co on the unit circle 1r to Hco, the space of functions which
extend to a bounded holomorphic function in the unit disk [D. It is closely
related to some other questions, such as the Pick-Nevanlinna problem of
minimizing the supremum norm over the set of bounded holomorphic
functions in lCD, subject to a finite or infinite set of interpolation conditions
[8-10J or the problem of seeking the largest circular domain of a positive
harmonic function whose first Taylor coefficients are given [2].

The problem has a remarkable variety of applications, especially in
systems engineering. Recent heightening of theoretical interest was brought
about by results of Adamyan, Arov, and Krejn [IJ on an equivalent
problem in operator theory. Nowadays a series of related interpolation and
approximation problems can be handled by several alternative mathemati­
cal approaches in a unified treatment (problems with matrix-valued
functions included, cf. [7, 14J, introduction, for instance).

Much less is known about a far-reaching generalization of the above
problem, which was brought into discussion in the recent paper [6J by
J. W. Helton and R. E. Howe (Unfortunately, this paper is not available to
me at present, therefore I refer to [5J). The authors study the following
optimization problem: Given a function F: 1r x CN ~ IR, find

inf supF(t, W(t)),
weE feU

(1.1 )

where E = (H CO n C)N denotes the space of all continuous CN-valued func­
tions on 1r with holomorphic continuation into [D. Assuming the existence
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of a continuous optimum W o for (1.1) they show that in effect this solution
can be characterized by two properties:

(1)

(2)

F(t, wo(t)) =const,

. 8F ( kWInd - (., W o .)) = ;:::, 1
8w

(1.2)

(1.3)

(N = 1, wind denotes the winding number about the origin of a complex­
valued nonvanishing function on lr). Under the assumptions that
F(t,f(t)) =0 and F(t, w»O for w=Jf(t), it makes sense to consider (1.1)
as a generalized distance of the function f to E, where E = H'X) is of
particular interest.

In the present paper we propose a new approach for determining (1.1)
(with N = 1 and E= H OO

), which is based on recent results about
parameter-depending boundary value problems [13]. This method gives
not only the characterization (1.2), (1.3) but also the existence and unique­
ness of a continuous optimum Wo under some quite general assumptions on
the distance function F. Note that W o is the optimum over the whole space
H OO and not only over H OO

(\ C. Moreover, we prove Helton's conjecture
[5, p. 362] that k = 1 in (1.3) for generic functions F.

2. BOUNDARY VALUE PROBLEMS OF RIEMANN-HILBERT TYPE

We begin by sketching some ideas concerning a class of nonlinear
boundary value problems of complex analysis. Let {M,}, E lr denote a
family of curves in the complex plane. We introduce the set rol of all
manifolds

M:= U {t}xM,clrxC
'E lr

(2.1 )

subject to the following hypotheses.

(i) For each t E lr the curve M, is homeomorphic to lr.

(ii) The manifold M is a C1-submanifold of lr xc.

(iii) M is transversal to each plane {t} x C (t E lr).

For given ME Wl, the following boundary value problem is considered:
Find all functions w = u + iv E H OO

(\ C holomorphic in the unit disk ID!
which satisfy the boundary relation

w(t)EM" \ftET. (2.2)
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Problems of this type are frequently called Riemann-Hilbert problems
(RHP). In this paper we only deal with problems pertaining to dosed
curves M,. Another class of problems addresses open curves M,.

The list of references concerning RHP's for closed curves M, is com­
parably small (an exception is, of course, the problem of conformal map­
ping involved in this case). Above all a paper by A. I. Snirel'man [11] must
be mentioned. Snirel'man describes the solution set under the additional
assumption that 0 Eint M" lift Elr. Further generalizations are due to M. A.
Efendiev [3,4]. In [12], the author proved existence results by means of
Leray-Schauder techniques and discussed the influence of the condition
OEintM,. Furthermore, in [13J, a connection between RHP's and a class
of extremal problems was pointed out.

Before summarizing relevant results, some notations must be introduced.
We denote the bounded and the unbounded component of C\M, by int M,
and ext M" respectively. A similar definition is made for int M and ext M.
Further, for each 8 ~ 0, let

intE M,:= int M, u {w EC : dist(w, M,) < 8},

inL e M, :=int M,n {WE C: dist(w, M,»8}.

For BE~ we put

intE M:= U {t} x inte M,.
'E If

If MoEm and 8>0 then

Ue(Mo):= {M Em: inL e M ocint M cinte M o}.

The local base {Ue(Mo)}e>o of neighborhoods of M o makes m become a
Hausdorff space.

We define the trace trf of a function f EC(lr) by

trf:= U {t}x{j(t)}clrxc.
'E If

Note that every function WE H OO n C is uniquely determined in []) by its
trace through the Poisson integral formula. The boundary condition (2.2)
can now be written in the form

trwcM. (2.3)

For any solution WE H oo n C of the RHP (2.3) we define the winding
number

windM w:= wind(w - m) (2.4)



BOUNDARY VALUE PROBLEMS 325

of w with respect to M. Here mE C(lr) is an arbitrary continuous function
with tr m c int M. The "wind" on the right of (2.4) refers to the usual
winding number about the origin. The solution set W(M) c HCfJ 1\ C
of (2.3) splits into the classes

Wk(M):= {WE W(M): wind M w=k}, kEZ.

If no confusion is possible, we sometimes write Wand Wk instead of W(M)
and Wk(M), respectively.

With regard to the solvability of the RHP, the following definition is
given: The manifold MEIDl is called regularly (holomorphically) traceable
if there exists a function W oE HCfJ 1\ C with

tr woc int M. (2.5)

The manifold MEIDl is said to be singularly (holomorphically) traceable if
it is not regularly traceable but there exists a W o E H

CfJ
1\ C with

tr W o c clos int M (2.6)

(clos denotes the closure of a set).
If MEIDl is neither regularly nor singularly traceable, we call it non­

traceable.
Finally we define

A(M) := {w E H
CfJ

: w(t) E clos int M, a.e. on lr}.

Sometimes the notation A(M) is simply replaced by A.
After these preparations relevant results of [12, 13J concerning the

solvability of the considered RHP can be summarized. The sign # denotes
cardinality.

THEOREM 1. For every MEIDl the following assertions hold:

(i) M is regularly traceable

<:>3k~O: # Wk>O

<:>Vk~O: # Wk>O

<:>#A>l

=Vk<O: # Wk=O.
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(ii) M is singularly traceable

<¢'>3ko<0: # Wko>O

<¢'>#A=l

<¢'>A= W ko = {wo}, woEHoonC

=:> 'r/ki=ko : # Wk=O.

(iii) M is nontraceable

<¢'>'r/kE71.: #Wk=O

<¢'> #A = O.

The theorem suggests a finer decomposition of rot For each k E 7l. + we
define

and put

IDl oo := {MEIDl: # W(M)=O}.

Thus the class of singularly traceable M is split into several subclasses.
Our first lemma concerns the stability of the relation ME IDlo under

small perturbations of M.

LEMMA 1. IDlo is an open subset of IDl.

Proof Let M oE IDlo, Wo E H OO n C, tr Woc int Mo. Then we have

8:= inf dist(wo(t), M o,) >0.
'E "If

Therefore, for each ME Ue(Mo), it follows that tr Wo c int M, i.e.,
MEIDlo· I

Our next intention is to examine how the membership of M to the
classes IDlk is changed by elementary transformations of M. As a shorthand
we introduce the notation (1, g E C\lr))

fM +g:= {(t, w) E If xC: [I(t)] ~1 (w - g(t)) E M,}.

If f( t) 1= 0, then MEIDl implies that fM +g E IDl. Further

tr w eM<¢,> tr(fw + g) c fM + g
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and

windfM+g(fw +g) = windMw +wind!

LEMMA 2. Let 1 ~ k < 00. Then the following implications hold:

(i) ME 9J10 => tM E 9J1 0 ,

(ii) ME9J1 k =>tME9J1k _ l .

Proof Let WoE HOC> n C be a given function and put WI (z) :=
Then we have

327

(2.9)

tr Wo c int M => tr WI C int(tM), (2.7)

tr Woc M, windMWo= -k => tr WI c tM, wind'M WI = -k + 1. )

Assertion (i) follows from (2.7); assertion (ii) can easily be derived from
(2.8) and from Theorem l(ii). I

LEMMA 3. Suppose ME 9J1k (1 ~ k < 00), W -k(M) = {wo}. Then

(i) wo(O)=O~t-IME9J1k+I'

(ii) wo(O)#O~t-IME9J1oo'

Proof (1) If t - 1M ¢ 9J1 00' careful use of Lemma 2 yields t - 1M E

IDlk + l • Consequently, either t- IME9J1k+1 or t- IME9J'loo'

(2) If wo(O)=O, the function WI defined by wl(z) :=Z-lwo(Z), ZE 11),

satisfies WIE W_k_I(t-IM), whence t- 1ME9J1k+1 •

(3) Let wo(O)#O and assume t- IME9'Jlk+l . Then W_k_I(t-lM)=
{wd. The function Wo defined by wo(z) := zwj(z) belongs to W _k(M) and
satisfies wo(O) = O. Hence W _AM) contains at least two elements W o and
wo0 But this is impossible due to Theorem l(ii). Consequently, we have
t- IME9J1 oo ' I

We are now going to investigate problems depending on a real
parameter. For this end we consider a family {MJAE(O.OO) of curves which
satisfy the following conditions

(i) O<A<oo=>M;,E9J1,

(ii) 0 < A< fl < 00 => M;c int M I"

(iii) The mapping IR + -+ 9J1, AH M; is continuous.

In [13 ] existence and dependence on ). of solutions to the family
RHP's tr we M A were examined. Since each M A belongs to exactly one
class 9J1 k it is a natural question to ask in which way the index k can
change if ), varies.

640/61/3-5
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LEMMA 4. If MAE IDlo then there exists an 8 > 0 such that M I-' E IDlo for
all J1 ~A -8.

Proof The assertion immediately follows from Lemma 1 and the above
hypotheses (ii) and (iii). I

LEMMA 5. Suppose MAE IDlk with 1~ k < 00. Then

(i) J1<k:::>MI-'EIDloo

(ii) J1 > A=> MI-' E IDlo·

Proof Since MAEIDl ko O<k< 00, the set A(MA) contains exactly one
element Wo E H oo n C. This function satisfies tr Wo c MA(cf. Theorem l(ii)).
The assumption (ii) leads to tr Woc int MI-' if J1 > A; for that reason asser­
tion (ii) holds. On the other hand, A(MI-') is a subset of A(MA) for J1 < A
and can contain at most the function woo But this is impossible because of
(2.9), since tr W oc M A. Thus we have # AI-' = 0 and assertion (i) follows
from Theorem l(iii). I

The next, much deeper, result is, in a sense, a conversion of Lemma 5.

LEMMA 6. If MAl E IDl oo and M).2 E IDlo then there exist exactly one Ao
with Al < Ao< A2 and exactly one ko> 0 such that the following implications
hold:

A< Ao => MAE IDloo ,

A= Ao => M AE IDlko '

A> Ao => M A E IDlo.

Proof We put Ao:= inf{A : M AEIDlo}. Then, by Lemma 4, MAO E IDlk

(1 ~ k ~ (0). Lemma 5 implies M A E IDl oo if A< Ao while Lemma 4 gives
M A E IDlo if A> Ao. Now the assertion follows from the proof of Theorem 3
in [13]. I

3. GENERALIZED BEST ApPROXIMATION BY HOLOMORPHIC FUNCTIONS

In this section the above results will be applied to prove existence and
uniqueness of the generalized best approximation of f in HOC!. This means
that we seek a W o E HOC! satisfying
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dF(f, W) := ess sup F(t, w(t)).
t E If

329

We suppose that the distance function F satisfies the following assump­
tions:

FE C(lr x C),

FE C1((lr x C)\ tr!),

F(t,f(t)) = 0, Vt E lr,

F(t,w»O, V(t,W)E(lrxC)\trf,

1::(t,W)!>o, V(t,W)E(lrxC)\trj,

(3.1 )

(3.2)

(3.3 )

jw[?: C1 =F(t, w)?: C. (3.6)

First of all we fix the function f and denote the class of all F satisfying
(3.1)-(3.6) by ty. For FEty let

Mf:= {(t, W)Elr xC: F(t, w)= }.}.

By introducing the system {Ve(Fo)} e> 0 of neighborhoods

of FoE ty, the set ty becomes a Hausdorff space. Note that the mappings

F~M~
/.

(3.7)

are continuous.
The classical distance function

F(t, w) := Iw - f(t)[

belongs to ty if fE C1(lr).
To avoid trivialities, in the sequel it will be assumed that f r/= H oo

•

LEMMA 7. If fr/= H OO then dp(f, H OO
) > 0 for each FE ty.

Proof From the assumptions on F one can easily deduce

VtElr, V8>0, 36>O:F(t,w)<b=lw-f(t)[<8. (3.8)

The existence of a sequence {wn} C Hoo with dF(f, Wn) -4 0 gives that

Vb> 0, 3no E 7L + : n?: no => ess sup F(t, wn(t)) < 6. (3.9)
t E!f
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From (3.8), (3.9), and the compactness of lr we get that

VI' >0, 3noE Z+: n ~no ~ Ilwn - fllL'X>(Tl < 1',

i.e., the convergence of W n to f in L OO(lr). But this is only possible if
fEHoo . I

The next theorem shows the existence and the uniqueness of the best
approximation. Moreover, it characterizes the nearest function Wo E H OO

tof

THEOREM 2. For each FE lY the following assertions hold:

(i) There exists a unique function W oE H OO satisfying

dF(f, wo) = dF(f, H OO
). (3.10)

(ii) A function W oE Hoo is the best approximation for f (in the sense of
(3.10)) if and only if

wind(wo-f)=: -ko<O,

F(t, wo(t)) = const.

(3.11)

(3.12)

(3.13)

Remark 1. Relation (3.11) can be replaced by WoE H OO
(} W;

(l <p < (0), W; being the Sobolev space on lr.

Remark 2. The equations (3.12) and (3.13) coincide with the charac­
terization of the best approximation given by Helton and Howe, because

Proof (1) Lemma 7 implies that Mf E Wl oo if )., < d := dF(f, H OO
).

(2) For)., > SUPtET F(t, 0) we have tr 0 = lr x {O} c int Mf, hence
Mf EWlo'

(3) Lemma 6 in conjunction with the first two steps ensures the
existence of ).,0 and ko> 0 with

MfEWl oo if ).,<).,0,

MfEWl ko if ).,=).,0,

MfEWlo if ).,>20,

From Theorem 1 it follows that d = 20, Obviously, the only function Wo in
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AAO is the unique solution of the approximation problem. Theorem 1
gives (3.11 )-(3.13).

(4) Conversely, let the function W o fulfill (3.11) (3.13). With
)'0 := F(t, wo(t)), the function Wo is a solution of the RHP tr w c Mfa, and
from (3.13) one sees that WoEW_ko(Mfo). Therefore we have MfoEIDlko
with ko~ 1. Lemma 5 gives Mf E9](0 for A> Ao and MfE 9J(oo for A< }"o.

Consequently Wo is the best approximation off I
Our final concern is the influence of small perturbations to the best

approximation. We first think of f as being fixed and only of the distance
function F as being subject to small variations.

For given FE (Y we denote by W F the solution of the approximation
problem. The set (Y is decomposed into the classes

(Yk:= {FE(Y : wind(wF-f) = -k}, k= 1, 2, ....

A conjecture raised by Helton [5, p.362] states that generic F should
belong to (Y 1. The next theorem (and Theorem 4) confirms this expectation
(for functions Fin (Y).

THEOREM 3. The set (Yl is an open dense subset of Ij.

Proof (l) Suppose FoE (Yl' i.e.,

(3.14)

where do :=dFo(f, H OO
). From Lemma 2 we infer that tM~gE9](o. From

Lemma 4 one can now conclude the existence of a positive number s such
that

The continuity of the maps (3.7) along with Lemma 1 guarantees the
existence of £5 > 0 such that tM~O_EE 9](0 for each FE Vo(Fo). Hence,

(3.15 )

By reducing £5, if necessary, one can achieve that

(3.16 )

Combining of (3.14) and (3.16) gives

and this implies

640/61/3-6
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Therefore (3.15) applies for ,{ = ,{F' The result is that

FE VJ(Fo) => tMfFE 9Jlo. (3.17)

On the other hand, we have MfFE 9Jlk with 1~ k = k(F) < 00 and therefore
Lemma 2 leads to

(3.18 )

Comparing (3.17) and (3.18) we find k= 1, hence MfFE9Jl1' ~pd thus
VJ(Fo) c ~l> i.e., ~1 is an open subset of ~.

(2) It remains to prove that ~1 is dense in~. For this end let FoE~
be a function which is not in ~1' Then Fo E ~k> with 2 ~ k < 00. Put
do := dFo(J, H oo

).

We choose a real-valued function '1: IR+ ~ IR+ u {O} satisfying the
relations

'1 E Coo, 0~'1(x)~1, 'v'XEIR+,

'1(X) =0, 'v'xE(0,do/2), '1(X) = 1, 'v'xE(do,oo).

If the positive number e is sufficiently small then the function Fe defined by

Fe(t, w) :=Fo(t, w-e'1(Fo(t, w-et~1)) t- 1)

belongs to ~; moreover Fe E Ve(Fo). Note that

M~o = M~o +et- 1,

with the abbreviation M~o = M~~, e~ O.
From Lemma 2 we obtain

In particular, the relation

(3.19)

(3.20)

(3.21 )

(with k - 1~ 1) shows that the RHP tr w c tM~o has a unique solution woo
An application of Lemma 3 to M:= tM~o gives wo(O) = O. Relation (3.19)
implies that We := Wo+ B is the only solution of the RHP tr w c tM~o' Since
we(O) = B # 0, we have M~o E 9Jl 00 (see Lemma 3 again). This yields

de := dF,(J, H oo
) > do,

which together with (3.21) and Lemma 5 implies

(3.22 )

(3.23 )
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By definition (3.22) we have Md,E IDl n (1::;; n < co), and by Lemma 2 it
follows that tMd E IDl n _ I' Comparing this with (3.23) one obtains n = 1,
i.e., Fe E lj 1 for e~ch 8 > O. I

In connection with certain applications a slightly modified concept of
perturbation is suggested. We fix a distance function F satisfying the condi­
tions (3.1 )-(3.6) with respect to f= 0 and define the distance d(f, H W

) of
an arbitrary functionfE C1(lr) to H W by

d(f, H W ):= inf ess sup F(t, w(t) - f(t)).
WEHoo lEu

The best approximation of f in this sense is denoted by wf' We introduce
the subclasses <£:k of C1(lr) by

<£:k:= {IE CI(lr)\Hw
: wind(wf - f) = -k}.

In addition, we put <£:0 = H oo n C1
• This produces the decomposition

CI(lr) = <£:0 U <£:1 U <£:2 U .". Again only the class <£:1 is generic:

THEOREM 4. <£:1 is an open dense subset of C1(lr).

Proof (1) As can easily be checked, for fo E C1(lr)\ <£:0 there exists an
8> 0, such that d(f, H oo )?: b > 0 provided thatllf-foil Cl ::;;8. Therefore a
perturbation of fo can be interpreted as variation of the distance function
F for fixed fo. This problem was already considered above.

(2) For foE<£:o we definef,,(t) :=fo(t)+lXt- 1 and show that !",E [j,
for each IX EC \ {O}. Let

M~:= {(t, w)ElrxC:F(t, w-fo(t)-lXt- 1 )=).}.

The functions W",:= tfo + IX extend holomorphically into [[D and satisfy
W ",(t) E int tM~. Therefore

VA> O. (3.24)

Since f", (with IX # 0) does not belong to H OO we have Xx := dU"" H oo
) > O.

By the definition of A"" one gets M~" E IDl k (1::;; k < (0) and taking intq
account (3.24) we conclude from Lemma 2 that M~x E IDl I . This means
f",E1I 1 I

Remark. In a similar manner the implication

can be proved.
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