Boundary Value Problems and Best Approximation by Holomorphic Functions

ELIAS WEGERT

Sektion Mathematik, Bergakademie Freiberg, Freiberg, DDR-9200, East Germany

Communicated by G. Meinardus

Received April 25, 1988

1. INTRODUCTION

A classical problem in complex analysis consists in finding the distance of a function $f \in L^{\infty}$ on the unit circle \mathbb{T} to H^{∞} , the space of functions which extend to a bounded holomorphic function in the unit disk \mathbb{D} . It is closely related to some other questions, such as the Pick-Nevanlinna problem of minimizing the supremum norm over the set of bounded holomorphic functions in \mathbb{D} , subject to a finite or infinite set of interpolation conditions [8-10] or the problem of seeking the largest circular domain of a positive harmonic function whose first Taylor coefficients are given [2].

The problem has a remarkable variety of applications, especially in systems engineering. Recent heightening of theoretical interest was brought about by results of Adamyan, Arov, and Krejn [1] on an equivalent problem in operator theory. Nowadays a series of related interpolation and approximation problems can be handled by several alternative mathematical approaches in a unified treatment (problems with matrix-valued functions included, cf. [7, 14], introduction, for instance).

Much less is known about a far-reaching generalization of the above problem, which was brought into discussion in the recent paper [6] by J. W. Helton and R. E. Howe (Unfortunately, this paper is not available to me at present, therefore I refer to [5]). The authors study the following optimization problem: Given a function $F: \mathbb{T} \times \mathbb{C}^N \to \mathbb{R}$, find

$$\inf_{w \in E} \sup_{t \in \mathbb{T}} F(t, w(t)), \tag{1.1}$$

where $E = (H^{\infty} \cap C)^N$ denotes the space of all continuous \mathbb{C}^N -valued functions on \mathbb{T} with holomorphic continuation into \mathbb{D} . Assuming the existence

of a continuous optimum w_0 for (1.1) they show that in effect this solution can be characterized by two properties:

(1)
$$F(t, w_0(t)) = \text{const},$$
 (1.2)

(2) wind
$$\frac{\partial F}{\partial w}(\cdot, w_0(\cdot)) = k \ge 1$$
 (1.3)

 $(N = 1, \text{ wind denotes the winding number about the origin of a complex$ valued nonvanishing function on T). Under the assumptions that <math>F(t, f(t)) = 0 and F(t, w) > 0 for $w \neq f(t)$, it makes sense to consider (1.1) as a generalized distance of the function f to E, where $E = H^{\infty}$ is of particular interest.

In the present paper we propose a new approach for determining (1.1) (with N=1 and $E=H^{\infty}$), which is based on recent results about parameter-depending boundary value problems [13]. This method gives not only the characterization (1.2), (1.3) but also the existence and uniqueness of a continuous optimum w_0 under some quite general assumptions on the distance function F. Note that w_0 is the optimum over the whole space H^{∞} and not only over $H^{\infty} \cap C$. Moreover, we prove Helton's conjecture [5, p. 362] that k = 1 in (1.3) for generic functions F.

2. BOUNDARY VALUE PROBLEMS OF RIEMANN-HILBERT TYPE

We begin by sketching some ideas concerning a class of nonlinear boundary value problems of complex analysis. Let $\{M_t\}_{t \in \mathbb{T}}$ denote a family of curves in the complex plane. We introduce the set \mathfrak{M} of all manifolds

$$M := \bigcup_{t \in \mathbb{T}} \{t\} \times M_t \subset \mathbb{T} \times \mathbb{C}$$
(2.1)

subject to the following hypotheses.

- (i) For each $t \in \mathbb{T}$ the curve M_t is homeomorphic to \mathbb{T} .
- (ii) The manifold M is a C^1 -submanifold of $\mathbb{T} \times \mathbb{C}$.
- (iii) M is transversal to each plane $\{t\} \times \mathbb{C}$ $(t \in \mathbb{T})$.

For given $M \in \mathfrak{M}$, the following boundary value problem is considered: Find all functions $w = u + iv \in H^{\infty} \cap C$ holomorphic in the unit disk \mathbb{D} which satisfy the boundary relation

$$w(t) \in M_t, \quad \forall t \in \mathbb{T}.$$

Problems of this type are frequently called Riemann-Hilbert problems (RHP). In this paper we only deal with problems pertaining to closed curves M_i . Another class of problems addresses open curves M_i .

The list of references concerning RHP's for closed curves M_t is comparably small (an exception is, of course, the problem of conformal mapping involved in this case). Above all a paper by A. I. Šnirel'man [11] must be mentioned. Šnirel'man describes the solution set under the additional assumption that $0 \in int M_t$, $\forall t \in \mathbb{T}$. Further generalizations are due to M. A. Efendiev [3, 4]. In [12], the author proved existence results by means of Leray-Schauder techniques and discussed the influence of the condition $0 \in int M_t$. Furthermore, in [13], a connection between RHP's and a class of extremal problems was pointed out.

Before summarizing relevant results, some notations must be introduced. We denote the bounded and the unbounded component of $\mathbb{C} \setminus M_t$ by int M_t and ext M_t , respectively. A similar definition is made for int M and ext M. Further, for each $\varepsilon \ge 0$, let

$$\operatorname{int}_{\varepsilon} M_{t} := \operatorname{int} M_{t} \cup \{ w \in \mathbb{C} : \operatorname{dist}(w, M_{t}) < \varepsilon \},$$
$$\operatorname{int}_{-\varepsilon} M_{t} := \operatorname{int} M_{t} \cap \{ w \in \mathbb{C} : \operatorname{dist}(w, M_{t}) > \varepsilon \}.$$

For $\varepsilon \in \mathbb{R}$ we put

$$\operatorname{int}_{\varepsilon} M := \bigcup_{t \in \mathbb{T}} \{t\} \times \operatorname{int}_{\varepsilon} M_t.$$

If $M_0 \in \mathfrak{M}$ and $\varepsilon > 0$ then

$$U_{\varepsilon}(M_0) := \{ M \in \mathfrak{M} : \operatorname{int}_{-\varepsilon} M_0 \subset \operatorname{int} M \subset \operatorname{int}_{\varepsilon} M_0 \}.$$

The local base $\{U_{\varepsilon}(M_0)\}_{\varepsilon>0}$ of neighborhoods of M_0 makes \mathfrak{M} become a Hausdorff space.

We define the trace tr f of a function $f \in C(\mathbb{T})$ by

$$\operatorname{tr} f := \bigcup_{t \in \mathbb{T}} \{t\} \times \{f(t)\} \subset \mathbb{T} \times \mathbb{C}.$$

Note that every function $w \in H^{\infty} \cap C$ is uniquely determined in \mathbb{D} by its trace through the Poisson integral formula. The boundary condition (2.2) can now be written in the form

$$\operatorname{tr} w \subset M. \tag{2.3}$$

For any solution $w \in H^{\infty} \cap C$ of the RHP (2.3) we define the winding number

wind_{*M*}
$$w :=$$
 wind($w - m$) (2.4)

of w with respect to M. Here $m \in C(\mathbb{T})$ is an arbitrary continuous function with tr $m \subset \text{int } M$. The "wind" on the right of (2.4) refers to the usual winding number about the origin. The solution set $W(M) \subset H^{\infty} \cap C$ of (2.3) splits into the classes

$$W_k(M) := \{ w \in W(M) : \text{wind}_M w = k \}, \qquad k \in \mathbb{Z}.$$

If no confusion is possible, we sometimes write W and W_k instead of W(M) and $W_k(M)$, respectively.

With regard to the solvability of the RHP, the following definition is given: The manifold $M \in \mathfrak{M}$ is called regularly (holomorphically) traceable if there exists a function $w_0 \in H^{\infty} \cap C$ with

$$\operatorname{tr} w_0 \subset \operatorname{int} M. \tag{2.5}$$

The manifold $M \in \mathfrak{M}$ is said to be singularly (holomorphically) traceable if it is not regularly traceable but there exists a $w_0 \in H^{\infty} \cap C$ with

$$\operatorname{tr} w_0 \subset \operatorname{clos} \operatorname{int} M \tag{2.6}$$

(clos denotes the closure of a set).

If $M \in \mathfrak{M}$ is neither regularly nor singularly traceable, we call it non-traceable.

Finally we define

$$A(M) := \{ w \in H^{\infty} : w(t) \in \text{clos int } M_t \text{ a.e. on } \mathbb{T} \}.$$

Sometimes the notation A(M) is simply replaced by A.

After these preparations relevant results of [12, 13] concerning the solvability of the considered RHP can be summarized. The sign # denotes cardinality.

THEOREM 1. For every $M \in \mathfrak{M}$ the following assertions hold:

(i) *M* is regularly traceable

$$\Leftrightarrow \exists k \ge 0 : \# W_k > 0$$
$$\Leftrightarrow \forall k \ge 0 : \# W_k > 0$$
$$\Leftrightarrow \# A > 1$$
$$\Rightarrow \forall k < 0 : \# W_k = 0.$$

(ii) *M* is singularly traceable

$$\Rightarrow \exists k_0 < 0 : \# W_{k_0} > 0$$

$$\Rightarrow \# A = 1$$

$$\Rightarrow A = W_{k_0} = \{w_0\}, \qquad w_0 \in H^{\infty} \cap C$$

$$\Rightarrow \forall k \neq k_0 : \# W_k = 0.$$

(iii) *M* is nontraceable

$$\Leftrightarrow \forall k \in \mathbb{Z} : \# W_k = 0$$
$$\Leftrightarrow \# A = 0.$$

The theorem suggests a finer decomposition of \mathfrak{M} . For each $k \in \mathbb{Z}_+$ we define

$$\mathfrak{M}_k := \{ M \in \mathfrak{M} : \# W_{-k}(M) > 0 \}$$

and put

$$\mathfrak{M}_{\infty} := \{ M \in \mathfrak{M} : \# W(M) = 0 \}.$$

Thus the class of singularly traceable M is split into several subclasses.

Our first lemma concerns the stability of the relation $M \in \mathfrak{M}_0$ under small perturbations of M.

LEMMA 1. \mathfrak{M}_0 is an open subset of \mathfrak{M} .

Proof. Let $M_0 \in \mathfrak{M}_0$, $w_0 \in H^{\infty} \cap C$, tr $w_0 \subset \operatorname{int} M_0$. Then we have

$$\varepsilon := \inf_{t \in \mathbb{T}} \operatorname{dist}(w_0(t), M_{0t}) > 0.$$

Therefore, for each $M \in U_{\varepsilon}(M_0)$, it follows that tr $w_0 \subset \text{int } M$, i.e., $M \in \mathfrak{M}_0$.

Our next intention is to examine how the membership of M to the classes \mathfrak{M}_k is changed by elementary transformations of M. As a shorthand we introduce the notation $(f, g \in C^1(\mathbb{T}))$

$$fM + g := \{(t, w) \in \mathbb{T} \times \mathbb{C} : [f(t)]^{-1} (w - g(t)) \in M_t\}.$$

If $f(t) \neq 0$, then $M \in \mathfrak{M}$ implies that $fM + g \in \mathfrak{M}$. Further

$$\operatorname{tr} w \subset M \Leftrightarrow \operatorname{tr}(fw+g) \subset fM+g$$

326

and

wind_{$$fM+g$$}($fw+g$) = wind _{M} w + wind f .

LEMMA 2. Let $1 \leq k < \infty$. Then the following implications hold:

- (i) $M \in \mathfrak{M}_0 \Rightarrow tM \in \mathfrak{M}_0$,
- (ii) $M \in \mathfrak{M}_k \Rightarrow tM \in \mathfrak{M}_{k-1}$.

Proof. Let $w_0 \in H^{\infty} \cap C$ be a given function and put $w_1(z) := zw_0(z)$. Then we have

$$\operatorname{tr} w_0 \subset \operatorname{int} M \Longrightarrow \operatorname{tr} w_1 \subset \operatorname{int}(tM), \tag{2.7}$$

tr $w_0 \subset M$, wind_M $w_0 = -k \Rightarrow$ tr $w_1 \subset tM$, wind_M $w_1 = -k + 1$. (2.8)

Assertion (i) follows from (2.7); assertion (ii) can easily be derived from (2.8) and from Theorem 1(ii).

LEMMA 3. Suppose $M \in \mathfrak{M}_k$ $(1 \leq k < \infty)$, $W_{-k}(M) = \{w_0\}$. Then

- (i) $w_0(0) = 0 \Leftrightarrow t^{-1}M \in \mathfrak{M}_{k+1},$
- (ii) $w_0(0) \neq 0 \Leftrightarrow t^{-1}M \in \mathfrak{M}_{\infty}$.

Proof. (1) If $t^{-1}M \notin \mathfrak{M}_{\infty}$, careful use of Lemma 2 yields $t^{-1}M \in \mathfrak{M}_{k+1}$. Consequently, either $t^{-1}M \in \mathfrak{M}_{k+1}$ or $t^{-1}M \in \mathfrak{M}_{\infty}$.

(2) If $w_0(0) = 0$, the function w_1 defined by $w_1(z) := z^{-1}w_0(z), z \in \mathbb{D}$, satisfies $w_1 \in W_{-k-1}(t^{-1}M)$, whence $t^{-1}M \in \mathfrak{M}_{k+1}$.

(3) Let $w_0(0) \neq 0$ and assume $t^{-1}M \in \mathfrak{M}_{k+1}$. Then $W_{-k-1}(t^{-1}M) = \{w_1\}$. The function \tilde{w}_0 defined by $\tilde{w}_0(z) := zw_1(z)$ belongs to $W_{-k}(M)$ and satisfies $\tilde{w}_0(0) = 0$. Hence $W_{-k}(M)$ contains at least two elements w_0 and \tilde{w}_0 . But this is impossible due to Theorem 1(ii). Consequently, we have $t^{-1}M \in \mathfrak{M}_{\infty}$.

We are now going to investigate problems depending on a real parameter. For this end we consider a family $\{M_{\lambda}\}_{\lambda \in (0,\infty)}$ of curves which satisfy the following conditions

(i) $0 < \lambda < \infty \Rightarrow M_{\lambda} \in \mathfrak{M},$

(ii)
$$0 < \lambda < \mu < \infty \Rightarrow M_{\lambda} \subset \operatorname{int} M_{\mu},$$
 (2.9)

(iii) The mapping $\mathbb{R}_+ \to \mathfrak{M}, \lambda \mapsto M_{\lambda}$ is continuous.

In [13] existence and dependence on λ of solutions to the family of RHP's tr $w \subset M_{\lambda}$ were examined. Since each M_{λ} belongs to exactly one class \mathfrak{M}_k it is a natural question to ask in which way the index k can change if λ varies.

ELIAS WEGERT

LEMMA 4. If $M_{\lambda} \in \mathfrak{M}_{0}$ then there exists an $\varepsilon > 0$ such that $M_{\mu} \in \mathfrak{M}_{0}$ for all $\mu \ge \lambda - \varepsilon$.

Proof. The assertion immediately follows from Lemma 1 and the above hypotheses (ii) and (iii).

LEMMA 5. Suppose $M_{\lambda} \in \mathfrak{M}_{k}$ with $1 \leq k < \infty$. Then

(i)
$$\mu < \lambda \Rightarrow M_{\mu} \in \mathfrak{M}_{\infty}$$

(ii) $\mu > \lambda \Rightarrow M_{\mu} \in \mathfrak{M}_{0}.$

Proof. Since $M_{\lambda} \in \mathfrak{M}_{k}$, $0 < k < \infty$, the set $A(M_{\lambda})$ contains exactly one element $w_{0} \in H^{\infty} \cap C$. This function satisfies tr $w_{0} \subset M_{\lambda}$ (cf. Theorem 1(ii)). The assumption (ii) leads to tr $w_{0} \subset \operatorname{int} M_{\mu}$ if $\mu > \lambda$; for that reason assertion (ii) holds. On the other hand, $A(M_{\mu})$ is a subset of $A(M_{\lambda})$ for $\mu < \lambda$ and can contain at most the function w_{0} . But this is impossible because of (2.9), since tr $w_{0} \subset M_{\lambda}$. Thus we have $\#A_{\mu} = 0$ and assertion (i) follows from Theorem 1(ii).

The next, much deeper, result is, in a sense, a conversion of Lemma 5.

LEMMA 6. If $M_{\lambda_1} \in \mathfrak{M}_{\infty}$ and $M_{\lambda_2} \in \mathfrak{M}_0$ then there exist exactly one λ_0 with $\lambda_1 < \lambda_0 < \lambda_2$ and exactly one $k_0 > 0$ such that the following implications hold:

$$\lambda < \lambda_0 \Rightarrow M_\lambda \in \mathfrak{M}_\infty,$$
$$\lambda = \lambda_0 \Rightarrow M_\lambda \in \mathfrak{M}_{k_0},$$
$$\lambda > \lambda_0 \Rightarrow M_\lambda \in \mathfrak{M}_0.$$

Proof. We put $\lambda_0 := \inf\{\lambda : M_\lambda \in \mathfrak{M}_0\}$. Then, by Lemma 4, $M_{\lambda_0} \in \mathfrak{M}_k$ $(1 \le k \le \infty)$. Lemma 5 implies $M_\lambda \in \mathfrak{M}_\infty$ if $\lambda < \lambda_0$ while Lemma 4 gives $M_\lambda \in \mathfrak{M}_0$ if $\lambda > \lambda_0$. Now the assertion follows from the proof of Theorem 3 in [13].

3. GENERALIZED BEST APPROXIMATION BY HOLOMORPHIC FUNCTIONS

In this section the above results will be applied to prove existence and uniqueness of the generalized best approximation of f in H^{∞} . This means that we seek a $w_0 \in H^{\infty}$ satisfying

$$d_F(f, w_0) = d_F(f, H^{\infty}) := \inf_{w \in H^{\infty}} d_F(f, w)$$

with

$$d_F(f, w) := \operatorname{ess \, sup}_{t \in \mathbb{T}} F(t, w(t)).$$

We suppose that the distance function F satisfies the following assumptions:

$$F \in C(\mathbb{T} \times \mathbb{C}), \tag{3.1}$$

$$F \in C^1((\mathbb{T} \times \mathbb{C}) \setminus \operatorname{tr} f), \tag{3.2}$$

$$F(t, f(t)) = 0, \qquad \forall t \in \mathbb{T}, \tag{3.3}$$

$$F(t, w) > 0, \qquad \forall (t, w) \in (\mathbb{T} \times \mathbb{C}) \setminus \operatorname{tr} f, \qquad (3.4)$$

$$\left|\frac{\partial F}{\partial w}(t,w)\right| > 0, \qquad \forall (t,w) \in (\mathbb{T} \times \mathbb{C}) \setminus \operatorname{tr} f, \tag{3.5}$$

$$\forall C \in \mathbb{R}, \quad \exists C_1 \in \mathbb{R} : t \in \mathbb{T}, \qquad |w| \ge C_1 \Rightarrow F(t, w) \ge C. \tag{3.6}$$

First of all we fix the function f and denote the class of all F satisfying (3.1)-(3.6) by \mathfrak{F} . For $F \in \mathfrak{F}$ let

$$M_{\lambda}^{F} := \{(t, w) \in \mathbb{T} \times \mathbb{C} : F(t, w) = \lambda\}.$$

By introducing the system $\{V_{\varepsilon}(F_0)\}_{\varepsilon>0}$ of neighborhoods

$$V_{\varepsilon}(F_0) := \{F \in \mathfrak{F} : M_{\lambda}^F \in U_{\varepsilon}(M_{\lambda}^{F_0}), \forall \lambda \in (0, \infty)\}$$

of $F_0 \in \mathfrak{F}$, the set \mathfrak{F} becomes a Hausdorff space. Note that the mappings

$$\Phi_{\lambda} \colon \mathfrak{F} \to \mathfrak{M}, \quad F \mapsto M_{\lambda}^{F} \tag{3.7}$$

are continuous.

The classical distance function

$$F(t, w) := |w - f(t)|$$

belongs to \mathfrak{F} if $f \in C^1(\mathbb{T})$.

To avoid trivialities, in the sequel it will be assumed that $f \notin H^{\infty}$.

LEMMA 7. If
$$f \notin H^{\infty}$$
 then $d_F(f, H^{\infty}) > 0$ for each $F \in \mathfrak{F}$.

Proof. From the assumptions on F one can easily deduce

$$\forall t \in \mathbb{T}, \quad \forall \varepsilon > 0, \quad \exists \delta > 0; F(t, w) < \delta \Rightarrow |w - f(t)| < \varepsilon.$$
(3.8)

The existence of a sequence $\{w_n\} \subset H^{\infty}$ with $d_F(f, w_n) \to 0$ gives that

$$\forall \delta > 0, \quad \exists n_0 \in \mathbb{Z}_+ : n \ge n_0 \Rightarrow \operatorname{ess\,sup}_{t \in \mathbb{T}} F(t, w_n(t)) < \delta. \tag{3.9}$$

From (3.8), (3.9), and the compactness of T we get that

$$\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{Z}_+ : n \ge n_0 \Rightarrow \|w_n - f\|_{L^{\infty}(\mathbb{T})} < \varepsilon,$$

i.e., the convergence of w_n to f in $L^{\infty}(\mathbb{T})$. But this is only possible if $f \in H^{\infty}$.

The next theorem shows the existence and the uniqueness of the best approximation. Moreover, it characterizes the nearest function $w_0 \in H^{\infty}$ to f.

THEOREM 2. For each $F \in \mathfrak{F}$ the following assertions hold:

(i) There exists a unique function $w_0 \in H^{\infty}$ satisfying

$$d_F(f, w_0) = d_F(f, H^{\infty}).$$
(3.10)

(ii) A function $w_0 \in H^{\infty}$ is the best approximation for f (in the sense of (3.10)) if and only if

$$w_0 \in H^{\infty} \cap C, \tag{3.11}$$

wind
$$(w_0 - f) =: -k_0 < 0,$$
 (3.12)

$$F(t, w_0(t)) = \text{const.}$$
(3.13)

Remark 1. Relation (3.11) can be replaced by $w_0 \in H^{\infty} \cap W_p^1$ $(1 , <math>W_p^1$ being the Sobolev space on \mathbb{T} .

Remark 2. The equations (3.12) and (3.13) coincide with the characterization of the best approximation given by Helton and Howe, because

wind
$$(w_0 - f) = -$$
 wind $\frac{\partial F}{\partial w}(\cdot, w_0)$.

Proof. (1) Lemma 7 implies that $M_{\lambda}^{F} \in \mathfrak{M}_{\infty}$ if $\lambda < d := d_{F}(f, H^{\infty})$.

(2) For $\lambda > \sup_{t \in \mathbb{T}} F(t, 0)$ we have $\operatorname{tr} 0 = \mathbb{T} \times \{0\} \subset \operatorname{int} M_{\lambda}^{F}$, hence $M_{\lambda}^{F} \in \mathfrak{M}_{0}$.

(3) Lemma 6 in conjunction with the first two steps ensures the existence of λ_0 and $k_0 > 0$ with

$$\begin{split} M_{\lambda}^{F} &\in \mathfrak{M}_{\infty} & \text{if} \quad \lambda < \lambda_{0}, \\ M_{\lambda}^{F} &\in \mathfrak{M}_{k_{0}} & \text{if} \quad \lambda = \lambda_{0}, \\ M_{\lambda}^{F} &\in \mathfrak{M}_{0} & \text{if} \quad \lambda > \lambda_{0}. \end{split}$$

From Theorem 1 it follows that $d = \lambda_0$. Obviously, the only function w_0 in

330

 A_{λ_0} is the unique solution of the approximation problem. Theorem 1(ii) gives (3.11)–(3.13).

(4) Conversely, let the function w_0 fulfill (3.11) (3.13). With $\lambda_0 := F(t, w_0(t))$, the function w_0 is a solution of the RHP tr $w \subset M_{\lambda_0}^F$, and from (3.13) one sees that $w_0 \in W_{-k_0}(M_{\lambda_0}^F)$. Therefore we have $M_{\lambda_0}^F \in \mathfrak{M}_{k_0}$ with $k_0 \ge 1$. Lemma 5 gives $M_{\lambda}^F \in \mathfrak{M}_0$ for $\lambda > \lambda_0$ and $M_{\lambda}^F \in \mathfrak{M}_{\infty}$ for $\lambda < \lambda_0$. Consequently w_0 is the best approximation of f.

Our final concern is the influence of small perturbations to the best approximation. We first think of f as being fixed and only of the distance function F as being subject to small variations.

For given $F \in \mathfrak{F}$ we denote by w_F the solution of the approximation problem. The set \mathfrak{F} is decomposed into the classes

$$\mathfrak{F}_k := \{F \in \mathfrak{F} : wind(w_F - f) = -k\}, \quad k = 1, 2, \dots$$

A conjecture raised by Helton [5, p. 362] states that generic F should belong to \mathfrak{F}_1 . The next theorem (and Theorem 4) confirms this expectation (for functions F in \mathfrak{F}).

THEOREM 3. The set \mathfrak{F}_1 is an open dense subset of \mathfrak{F} .

Proof. (1) Suppose $F_0 \in \mathfrak{F}_1$, i.e.,

$$M_{d_0}^{F_0} \in \mathfrak{M}_1, \tag{3.14}$$

where $d_0 := d_{F_0}(f, H^{\infty})$. From Lemma 2 we infer that $tM_{d_0}^{F_0} \in \mathfrak{M}_0$. From Lemma 4 one can now conclude the existence of a positive number ε such that

$$tM_{d_0-\varepsilon}^{F_0} \in \mathfrak{M}_0.$$

The continuity of the maps (3.7) along with Lemma 1 guarantees the existence of $\delta > 0$ such that $tM_{d_0-\varepsilon}^F \in \mathfrak{M}_0$ for each $F \in V_{\delta}(F_0)$. Hence,

$$F \in V_{\delta}(F_0), \qquad \lambda \ge d_0 - \varepsilon \Rightarrow t M^F_{\lambda} \in \mathfrak{M}_0.$$
 (3.15)

By reducing δ , if necessary, one can achieve that

$$F \in V_{\delta}(F_0) \Rightarrow M_{d_0-\varepsilon}^F \subset \operatorname{int} M_{d_0}^{F_0}.$$
(3.16)

Combining of (3.14) and (3.16) gives

$$F \in V_{\delta}(F_0) \Rightarrow M^F_{d_0 - \varepsilon} \in \mathfrak{M}_{\infty},$$

and this implies

$$F \in V_{\delta}(F_0) \Rightarrow \lambda_F := d_F(f, H^{\infty}) > d_0 - \varepsilon.$$

ELIAS WEGERT

Therefore (3.15) applies for $\lambda = \lambda_F$. The result is that

$$F \in V_{\delta}(F_0) \Rightarrow t M_{\lambda_F}^F \in \mathfrak{M}_0. \tag{3.17}$$

On the other hand, we have $M_{\lambda_F}^F \in \mathfrak{M}_k$ with $1 \leq k = k(F) < \infty$ and therefore Lemma 2 leads to

$$F \in V_{\delta}(F_0) \Rightarrow t M_{\lambda_F}^F \in \mathfrak{M}_{k-1}.$$
(3.18)

Comparing (3.17) and (3.18) we find k = 1, hence $M_{\lambda_F}^F \in \mathfrak{M}_1$, and thus $V_{\delta}(F_0) \subset \mathfrak{F}_1$, i.e., \mathfrak{F}_1 is an open subset of \mathfrak{F} .

(2) It remains to prove that \mathfrak{F}_1 is dense in \mathfrak{F} . For this end let $F_0 \in \mathfrak{F}$ be a function which is not in \mathfrak{F}_1 . Then $F_0 \in \mathfrak{F}_k$, with $2 \le k < \infty$. Put $d_0 := d_{F_0}(f, H^{\infty})$.

We choose a real-valued function $\eta: \mathbb{R}_+ \to \mathbb{R}_+ \cup \{0\}$ satisfying the relations

$$\eta \in C^{\infty}, \quad 0 \leq \eta(x) \leq 1, \quad \forall x \in \mathbb{R}_+,$$

$$\eta(x) = 0, \quad \forall x \in (0, d_0/2), \quad \eta(x) = 1, \quad \forall x \in (d_0, \infty).$$

If the positive number ε is sufficiently small then the function F_{ε} defined by

$$F_{\varepsilon}(t, w) := F_0(t, w - \varepsilon \eta (F_0(t, w - \varepsilon t^{-1})) t^{-1})$$

belongs to \mathfrak{F} ; moreover $F_{\varepsilon} \in V_{\varepsilon}(F_0)$. Note that

$$M_{d_0}^{\varepsilon} = M_{d_0}^0 + \varepsilon t^{-1}, \qquad (3.19)$$

with the abbreviation $M_{d_0}^{\varepsilon} = M_{d_0}^{F_{\varepsilon}}, \ \varepsilon \ge 0.$

From Lemma 2 we obtain

$$M^{0}_{d_{0}} \in \mathfrak{M}_{k}, \ t M^{0}_{d_{0}} \in \mathfrak{M}_{k-1}, \ \dots, \ t^{k} M^{0}_{d_{0}} \in \mathfrak{M}_{0}.$$
(3.20)

In particular, the relation

$$tM^0_{d_0} \in \mathfrak{M}_{k-1} \tag{3.21}$$

(with $k-1 \ge 1$) shows that the RHP tr $w \subset tM_{d_0}^0$ has a unique solution w_0 . An application of Lemma 3 to $M := tM_{d_0}^0$ gives $w_0(0) = 0$. Relation (3.19) implies that $w_{\varepsilon} := w_0 + \varepsilon$ is the only solution of the RHP tr $w \subset tM_{d_0}^{\varepsilon}$. Since $w_{\varepsilon}(0) = \varepsilon \ne 0$, we have $M_{d_0}^{\varepsilon} \in \mathfrak{M}_{\infty}$ (see Lemma 3 again). This yields

$$d_{e} := d_{F_{e}}(f, H^{\infty}) > d_{0}, \qquad (3.22)$$

which together with (3.21) and Lemma 5 implies

$$tM_{d_{\varepsilon}}^{\varepsilon} \in \mathfrak{M}_{0}. \tag{3.23}$$

332

By definition (3.22) we have $M_{d_{\epsilon}}^{\varepsilon} \in \mathfrak{M}_{n}$ $(1 \le n < \infty)$, and by Lemma 2 it follows that $tM_{d_{\epsilon}}^{\varepsilon} \in \mathfrak{M}_{n-1}$. Comparing this with (3.23) one obtains n = 1, i.e., $F_{\varepsilon} \in \mathfrak{F}_{1}$ for each $\varepsilon > 0$.

In connection with certain applications a slightly modified concept of perturbation is suggested. We fix a distance function F satisfying the conditions (3.1)-(3.6) with respect to $f \equiv 0$ and define the distance $d(f, H^{\infty})$ of an arbitrary function $f \in C^1(\mathbb{T})$ to H^{∞} by

$$d(f, H^{\infty}) := \inf_{w \in H^{\infty}} \operatorname{ess\,sup}_{t \in \mathbb{T}} F(t, w(t) - f(t)).$$

The best approximation of f in this sense is denoted by w_f . We introduce the subclasses \mathfrak{C}_k of $C^1(\mathbb{T})$ by

$$\mathfrak{C}_k := \{ f \in C^1(\mathbb{T}) \setminus H^\infty : \operatorname{wind}(w_f - f) = -k \}$$

In addition, we put $\mathfrak{C}_0 = H^{\infty} \cap C^1$. This produces the decomposition $C^1(\mathbb{T}) = \mathfrak{C}_0 \cup \mathfrak{C}_1 \cup \mathfrak{C}_2 \cup \cdots$ Again only the class \mathfrak{C}_1 is generic:

THEOREM 4. \mathfrak{C}_1 is an open dense subset of $C^1(\mathbb{T})$.

Proof. (1) As can easily be checked, for $f_0 \in C^1(\mathbb{T}) \setminus \mathfrak{C}_0$ there exists an $\varepsilon > 0$, such that $d(f, H^{\infty}) \ge \delta > 0$ provided that $||f - f_0||_{C^1} \le \varepsilon$. Therefore a perturbation of f_0 can be interpreted as variation of the distance function F for fixed f_0 . This problem was already considered above.

(2) For $f_0 \in \mathfrak{C}_0$ we define $f_{\alpha}(t) := f_0(t) + \alpha t^{-1}$ and show that $f_{\alpha} \in \mathfrak{C}_1$, for each $\alpha \in \mathbb{C} \setminus \{0\}$. Let

$$M_{\lambda}^{\alpha} := \{(t, w) \in \mathbb{T} \times \mathbb{C} : F(t, w - f_0(t) - \alpha t^{-1}) = \lambda\}.$$

The functions $w_{\alpha} := tf_0 + \alpha$ extend holomorphically into \mathbb{D} and satisfy $w_{\alpha}(t) \in \operatorname{int} tM_{\lambda}^{\alpha}$. Therefore

$$tM_{\lambda}^{\alpha} \in \mathfrak{M}_{0}, \qquad \forall \lambda > 0. \tag{3.24}$$

Since f_{α} (with $\alpha \neq 0$) does not belong to H^{∞} we have $\lambda_{\alpha} := d(f_{\alpha}, H^{\infty}) > 0$. By the definition of λ_{α} , one gets $M^{\alpha}_{\lambda_{\alpha}} \in \mathfrak{M}_{k}$ $(1 \leq k < \infty)$ and taking into account (3.24) we conclude from Lemma 2 that $M^{\alpha}_{\lambda_{\alpha}} \in \mathfrak{M}_{1}$. This means $f_{\alpha} \in \mathfrak{C}_{1}$

Remark. In a similar manner the implication

$$k \neq 1, \quad f \in \mathfrak{C}_k, \quad \alpha \in \mathbb{C} \setminus \{0\} \Rightarrow f + \alpha t^{-1} \in \mathfrak{C}_1$$

can be proved.

ELIAS WEGERT

References

- V. M. ADAMYAN, D. S. AROV, AND M. G. KREJN, Infinite Hankel matrices and a generalized problem of Carathéodory-Fejér and I. Schur, *Funktsional anal. i Prilozhen* 2 (1968), 1–17. [Russian]
- C. CARATHÉODORY AND L. FEJÉR, Über den Zusammenhang der Extremen von harmonischen Funktionen mit ihren Koeffizienten und über den Picard-Landauschen Satz, *Rend. Circ. Mat. Palermo* 32 (1911), 218–239.
- 3. M. A. EFENDIEV, The nonlinear Hilbert problem for meromorphic functions in the disk, *Izv. Akad. Nauk Azerbaĭdzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk* 5 (1976), 53-58. [Russian]
- M. A. EFENDIEV, "Topological nontrivial" and meromorphic solutions of the nonlinear Hilbert problem for multiply-connected regions, *Izv. Akad. Nauk Azerbaĭdzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk* 5 (1982), 18-21.
- 5. J. W. HELTON, Optimization over spaces of analytic functions and the corona problem, J. Operator Theory 15 (1986), 359–375.
- J. W. HELTON AND R. E. HOWE, A bang-bang theorem for optimization over spaces of analytic functions, J. Approx. Theory 47 (1986), 101–121.
- 7. M. H. GUTKNECHT, Rational Carathéodory-Fejér approximation on a disk, a circle, and an interval, J. Approx. Theory 41 (1984), 257–278.
- 8. R. NEVANLINNA, Über beschränkte Funktionen, die in gegebenen Punkten vorgeschriebene Werte annehmen, Ann. Acad. Sci. Fenn. Ser. A 13 (1919), 1.
- 9. G. PICK, Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden, *Math. Ann.* 77 (1916), 7–23.
- I. SCHUR, Über Potenzreihen, die im Inneren des Einheitskreises beschränkt sind, J. Reine Angew. Math. 147 (1917), 205-232; 148 (1918), 122-145.
- 11. A. I. ŠNIREL'MAN, A degree of quasi-linear-like mapping and the nonlinear Hilbert problem, *Mat. Sb. (N.S.)* 89 (1972), 366-389. [Russian]
- 12. E. WEGERT, Topological methods for strongly nonlinear Riemann-Hilbert problems for holomorphic functions, *Math. Nachr.* **134** (1987), 201–230.
- 13. E. WEGERT, Boundary value problems and extremal problems for holomorphic functions, Complex Variables Theory Appl. 11 (1989), 233-256.
- 14. N. J. YOUNG, The Nevanlinna-Pick problem for matrix-valued functions, J. Operator Theory 15 (1986), 239-265.